
Shortest Unweighted Path

Remember that the (unweighted) length of a path
in a graph is the number of edges the path
contains.

Consider a directed graph and let S be any specific
node in this graph. We now give an algorithm for
finding the shortest path from S to every other
node in the graph.

The algorithm maintains a queue of nodes, which
initially contains only S.

It gives each node a value, which ultimately will be
the length of the shortest path to it.

Finally, it gives each node a predecessor node in
its path from S. This allows us to find the path
from S to the node the way we found the path
from the entrance to the exit of a maze in Lab 3.

Initially make the value of each node except S be
"INFINITY". If you are thinking of a Java
implementation, INFINITY can be either
Integer.MAX_VALUE or Double.MAX_VALUE,
depending on how you want to think of the values.

If you change the logic a bit you could also initialize
the distance to -1. What is important is being able
to determine if a node has an assigned distance or
the default distance.

Make the value of S be 0.

Now perform the following steps until the queue is
empty.

a) Remove the head of the queue. Call this node X.

b) For each outgoing edge from X to another node
Y, if Y’s value is INFINITY make the new value of
Y be the (value of X) + 1, make the predecessor
of Y be X, and add Y to the queue.

If Y’s value is less than INFINITY then it will be
no more than the (value of X)+1, so we ignore Y,
we don’t change its value and we don’t add it to
the queue.

Note that, because we are using a queue, the
algorithm first finds all of the paths of length 0, then
all of the shortest paths of length 1, then all of the
shortest paths of length 2, and so forth.

Now, how do we know this algorithm gives each
node its correct distance from S?

I claim that if node X has distance n from S then the value
this algorithm assigns to X is n. This is certainly true when n
is 0 or 1. For other nodes let S=X0->X1->X2->...->Xn=X be a
path of length n to X.

For each node Xt on this path, the algorithm couldn’t give Xt

a value greater than t because it assigns values in increasing
order. If it gave Xt a value less than t, that would give us a
path from S to Xt of length less than t. Substituting that for
the start of our path would give a path to X of length less
than n which contradicts the assumption that the real
distance from S to X is n. So the algorithm must give each Xt

the value t. In particular, it gives X, which is also Xn the
correct value n.

Note that this algorithm visits every edge in the
graph and so it runs in time O(|E|).

A

B

C

E

D

F

Example: let’s run the algorithm on the following
graph, where we take B as our source node.

I will write next to each node its value (distance
from S) and its predecessor when we compute
them. Unmarked nodes still have value INFINITY.

A

B

C

E

D

F

Initially we make the source node B have value 0 and
put it in the queue.

Queue: [B]

For the next step we remove B from the queue. Its
outgoing edges all go to nodes with value INFINITY.
We give them value 1 and add them to the queue:

0

A

B

C

E

D

F

Queue: [A C E]

For the next step we remove the head of the queue,
which is A with value 1. It has outgoing edges to C
and E, both of which have known values, so we
ignore them.

0

1B
1B

1B

A

B

C

E

D

F

Queue: [C E]

Now the head of the queue is C. It has outgoing
edges to E, which has a known value, and also to D
and F. We give D and F value 2 and add them to the
queue.

0

1B
1B

1B

A

B

C

E

D

F

Queue: [E D F]

At this point each node in the graph has a value and
a predecessor, so for the last three steps we will
remove E, D, and F from the queue and nothing will
be added.

0

1B
1B

1B

2C

2C

A

B

C

E

D

F

Note that we can find the path from B to any node X
by walking backwards along the predecessors from
X to B. This is the same way we found paths from
the entrance to the exit of a maze in Lab 3.

0

1B
1B

1B

2C

2C

Question: Would this algorithm still work if we
replaced our queue with a stack?

A. Yes, it will still find shortest paths
B. It will find paths, but not necessarily shortest

paths.
C. It will not necessarily find the path from S to

every other node.

Question: Does this algorithm work if the
graph has a cycle?

S

B

EC

D

A. Yes
B. No

